$P_{H}^{hF}(\Lambda)$ =5 the "real" P is thus constant in the phase separated $P_{c}\left(\frac{1}{m}\right)$ $\tilde{v} = l_M$ state Universality Petron let us look at the behaviour of the system close to Peric, pr. $P(\tilde{v}) = P(\tilde{v}_c) + \frac{\partial P}{\partial \tilde{v}} \Big|_{\tilde{l}_c} (\tilde{v} - \tilde{v}_c) + \frac{1}{2} \frac{\partial^2 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^3 + \dots \int_{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^3 + \dots \int_{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^3 + \dots \int_{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \dots \int_{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \dots \int_{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v} - \tilde{v}_c)^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'} (\tilde{v} - \tilde{v} - \tilde{v} - \tilde{v})^2 + \frac{1}{\delta} \frac{\partial^3 P}{\partial \tilde{v}'}$ At $T_{c_1}V_{c_1}$, $\frac{\partial P}{\partial \tilde{v}} = \frac{\partial^2 P}{\partial \tilde{v}^2} = 0$ Mean-field: $P = \frac{hT}{\partial \tilde{v} - \frac{n}{2}} - \frac{n}{2\tilde{v}^2}$ $P'(\hat{v}) = 0 = -\frac{h_{\tau_c}}{(\tilde{v_c} - \tilde{v_c})^2} + \frac{v}{\tilde{v_c}} = v = \frac{\tilde{v_c}^3}{v} = -\frac{(\tilde{v_c} - \tilde{v_c})^2}{4\tau_c}$ (*) $\rho''(\hat{v}) = 0 \quad (\frac{v h \overline{c}}{(v_{i}^{2} - \frac{n}{c})^{3}}) = \frac{3v}{v_{c}^{2}} \quad (=) \quad \frac{\widetilde{v_{c}^{2}}}{3m} = \frac{(\widetilde{v_{c}^{2}} - \frac{n}{c})^{3}}{2m \overline{c}_{c}} \quad (\neq)$ $\frac{(\star \star)}{(\star)} = 5 \quad \frac{\widetilde{V}_{c}}{3} = \frac{(\widetilde{V}_{c} - \frac{5}{2})}{2} = 5 \quad \frac{\widetilde{V}_{c}}{2} = \frac{35}{2}$ $\frac{P_{c}}{2} = \frac{24}{27} \int_{c}^{c} \frac{P_{c}}{27} \int_{c}^{c} \frac{24}{27} \int_{c}^{c} \frac{27}{27} \int_{c}^{c} \frac{1}{27} \int_{c}^{c$ = Thue quartitis that depud a two parameters, side une & demonstration

4.4) the Ferramagnetic transition & the new-field Ising model
The Ising model is a simplified model to account for the exchange
interestics interven electrons in a solid. Consider a lattice
of L^d sits in d dimensions. At each site, we associate a
value si
$$\in \{1, -1\}$$
 (which can spin 4/2 on -4/2) and consider
the Hamiltonian:

* Here are and to enderstand the energence of ferrancy vertices, which describes systems such that $|\langle m \rangle| = |\langle m \rangle|^2 S; > |$ remains mon zero

as
$$N \to \infty$$
 in the absence of magnetic field. In such systems,
the exchange interactions leads to cun energy interaction.
*Ferromagnets consepond to $3>0$, which forms 14 bb , while $3<0$
consepond to and farmagnets, which forms 14 bb , while $3<0$
consepond to and farmagnets, which forms 14 bb .
Canonical susable:
*At $T=\infty$, $P(\{S_i\}) = \frac{1}{2}$ and the 2^N configurations are
again ally likely so that there will be no rationagnetization.
*At $T=0$, $P(\{S_i\})=0$ if all the spins are not aligned d m=11.
Q: What happens in between?
Partition function: With here h finite for mon.
 $Z = \sum_{i=0}^{N} e^{p(S_i = S_i + h = S_i)}$
so that $< M > = \frac{1}{2^{N-1}} \int_{N-1}^{N-2} \int_{T}^{N-1} \int_{N-1}^{N-1} \int_{N-1}^{N-1$

(S)

Nexult:
As L-000,
$$P(m) \rightarrow \frac{1}{2} \delta(m+m^{y}) + \frac{1}{2} \delta(m-m^{y})$$

 $m^{*}(\tau)$
Above the certical "Cause"
temperature, $m \simeq 0$. Below
 $m = \pm m^{*}(\tau) \sim O(2)$.
The can we understand this?
Mean-field theory:
 $H = -3 \geq S; S; -h \gtrsim S;$
let us consider the contributions involving spin $i = H_{i} = -hS_{i} - (S \geq S_{i})S_{i}$
 $S \geq S_{i}$ can be seen as the effective magnetic field that the meighbors
of i induce on spin i. If the System is homogeneous
let the fluctuations are small,
 $\sum_{j \in U(i)} S \simeq 2m$, where q is the number
of meighbors of spin i (2d on a square lablic in d dinantion).
This leads to $H_{i} = -(h+qmS)S_{i}$
This is like the theorieltonian of a single spin in a field by - h+qmS

For T>Tc, aly one solution, m=0. $T \leq Tc$, three solutions, $m=\pm m_0$ & m=0. like in the liquid gas transition, when we had 3 solution $\tilde{v}_0^*, \tilde{v}_0^* & \tilde{v}_c$, the middle one, here m=0, is not a local minimum of the landau free lenger.

(ordering for
$$T_{c}$$
: small an expression
tauh($x_{1} \le x = \infty \quad m = \quad \beta q m J$
 $T < T_{c} \iff \beta q J > 1 \iff T < \frac{qJ}{4B} = T_{c}$
Critical expression
Expanding tauh($x_{1} = x - \frac{x^{3}}{3}$, we see that
 $T < T_{c} \implies m \cong \beta q m J - \frac{(\beta q m J)^{3}}{3}$
 $(\Rightarrow) (\beta - \beta) q^{3}m = \frac{4}{3} \beta^{3} q^{3} J^{3}m^{3} = \infty \quad m < \pm (T_{c} - T_{c})^{\beta}; \beta = \frac{1}{1}$
(2d: $\beta = \frac{4}{8}$)
Magnetic fiel
 $m \simeq \beta h + m \frac{T_{c}}{T} - \frac{m^{3}}{3} (\frac{T_{c}}{T})^{3}$, using $T_{c} = \frac{qJ}{4B}$
 $T = T_{c} \implies m \propto h^{1/3}$
 $T = T_{c} \implies m \propto h^{1/3}$
 $T = T_{c} \implies m \propto h^{1/3}$
 $T = T_{c} \implies m (T - T_{c}) = \beta h \implies \chi = \frac{\partial m}{\partial h} \int_{h=0}^{\infty} \frac{\pi}{T-T_{c}}$
lidu for the Vau der Waals fluid!
 $S_{i} = \pm i \longrightarrow M_{i} = \frac{4 + S_{i}}{2} \in Co_{i}J \implies b$ fallior model for alloration
 $fluid!$
The world of phase trace pitios is full of such scerpsize!